EE 230 Lecture 35

Small Signal Models Small Signal Analysis

Small-signal Operation of Nonlinear Circuits

- Small-signal principles
- Example Circuit
- ----> Small-Signal Models
 - Small-Signal Analysis of Nonlinear Circuits

Solution for the example was based upon solving the nonlinear circuit for V_{OUT} and then linear zing the solution by doing a Taylor's series expansion

- Solution of nonlinear equations very involved with two or more nonlinear devices
- Taylor's series linearization can get very tedious if multiple nonlinear devices are present

Standard Approach to small-signal analysis of nonlinear networks

- 1. Solve nonlinear network
- 2. Linearize solution

Alternative Approach to small-signal analysis of nonlinear networks

- 1.Linearize nonlinear devices
- 2. Replace all devices with small-signal equivalent

3. Solve linear small-signal network

Alternative Approach to small-signal analysis of nonlinear networks

- 1. Linearize nonlinear devices
- 2. Replace all devices with small-signal equivalent
- 3. Solve linear small-signal network

Must only develop linearized model once for any nonlinear device

e.g. once for a MOSFET, once for a JFET, and once for a BJT

Linearized model for nonlinear device termed "small-signal model"

derivation of small-signal model for most nonlinear devices is less complicated than solving even one simple nonlinear circuit

Solution of linear network much easier than solution of nonlinear network

Linearized nonlinear devices

Dc and small-signal equivalent elements

Dc and small-signal equivalent elements

Dc and small-signal equivalent elements

How is the small-signal equivalent circuit obtained from the nonlinear circuit?

What is the small-signal equivalent of the MOSFET and BJT ?

4-terminal small-signal network summary

Small signal model:

$$\mathbf{\dot{i}}_{1} = y_{11} \mathbf{u}_{1} + y_{12} \mathbf{u}_{2} + y_{13} \mathbf{u}_{3}$$
$$\mathbf{\dot{i}}_{2} = y_{21} \mathbf{u}_{1} + y_{22} \mathbf{u}_{2} + y_{23} \mathbf{u}_{3}$$
$$\mathbf{\dot{i}}_{3} = y_{31} \mathbf{u}_{1} + y_{32} \mathbf{u}_{2} + y_{33} \mathbf{u}_{3}$$

$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_i (\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3)}{\partial \mathbf{V}_j} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_q}$$

$$\left. \begin{array}{l} I_1 = f_1 (V_1, V_2, V_3) \\ I_2 = f_2 (V_1, V_2, V_3) \\ I_3 = f_3 (V_1, V_2, V_3) \end{array} \right\}$$

3-terminal small-signal network summary

Small signal model:

$$\dot{\mathbf{i}}_{1} = y_{11} \mathcal{V}_{1} + y_{12} \mathcal{V}_{2}$$

$$\dot{\mathbf{i}}_{2} = y_{21} \mathcal{V}_{1} + y_{22} \mathcal{V}_{2}$$

$$\dot{\mathbf{i}}_{1} = \frac{\partial \mathbf{f}_{i} (\mathbf{V}_{1}, \mathbf{V}_{2})}{\partial \mathbf{V}_{j}} \Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{q}} \xrightarrow{\mathbf{V}_{1}} \begin{array}{c} \mathbf{y}_{11} \leq \mathbf{v}_{1} \\ \mathbf{y}_{11} \leq \mathbf{v}_{1} \\ \mathbf{y}_{21} \mathcal{V}_{1} \\ \mathbf{y}_{21} \mathcal{V}_{2} \\ \mathbf{y}_{21} \\$$

Review from Last Time: 2-terminal network summary

A Small Signal Equivalent Circuit

MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

Small Signal Model of MOSFET

Small Signal Model of MOSFET

$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{GSQ} - V_{T})$$
$$g_{Q} \cong \lambda I_{DQ}$$

Alternate equivalent expressions:

$$I_{DQ} = \mu C_{OX} \frac{W}{2L} (V_{GSQ} - V_{T})^{2} (1 + \lambda V_{DSQ}) \cong \mu C_{OX} \frac{W}{2L} (V_{GSQ} - V_{T})^{2}$$
$$g_{m} = \mu C_{OX} \frac{W}{L} (V_{GSQ} - V_{T})$$
$$g_{m} = \sqrt{2\mu C_{OX} \frac{W}{L}} \bullet \sqrt{I_{DQ}}$$
$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}}$$

Small signal analysis example

 $\frac{2I_{DQ}R}{[V_{T}+V_{T}]}$

Observe the small signal voltage gain is twice the Quiescent voltage across R divided by $V_{SS}+V_T$

- This analysis which required linearization of a nonlinear output voltage is quite tedious.
- This approach becomes unwieldy for even slightly more complicated circuits
- A much easier approach based upon the development of small signal models will provide the same results, provide more insight into both analysis and design, and result in a dramatic reduction in computational requirements

Consider again:

Small signal analysis example

$$A_{v} = \frac{2I_{DQ}R}{\left[V_{SS} + V_{T}\right]}$$

ived for $\lambda = 0$

$$I_{DQ} = \mu C_{OX} \frac{W}{2L} (V_{GSQ} - V_{T})^{2}$$

Consider again:

Small signal analysis example

$$A_{V} = rac{V_{out}}{V_{IN}} = -rac{g_{m}}{g_{o} + 1/R}$$

For
$$\lambda = 0$$
, $g_0 = \lambda_{IDQ} = 0$

$$A_{V} = \frac{V_{OUT}}{V_{IN}} = -g_{m}R$$

but
$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}} \qquad V_{GSQ} = -V_{SS}$$

thus

$$A_{v} = \frac{2I_{DQ}R}{\left[V_{ss} + V_{T}\right]}$$

Consider again:

Small signal analysis example

$$A_{V} = rac{V_{out}}{V_{IN}} = -rac{g_{m}}{g_{o} + 1/R}$$

For
$$\lambda = 0$$
, $g_0 = \lambda_{IDQ} = 0$

 $A_{v} = \frac{2I_{DQ}R}{\left[V_{ss} + V_{T}\right]}$

Same expression as derived before

More accurate gain can be obtained if λ effects are included and does not significantly increase complexity of small signal analysis

Usually operated in Forward Active Region when small-signal model is needed

Small-signal model:

$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right)}{\partial \mathbf{V}_{j}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$
$$\mathbf{y}_{11} = g_{\pi} = \frac{\partial \mathbf{I}_{B}}{\partial \mathbf{V}_{BE}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$
$$\mathbf{y}_{12} = \frac{\partial \mathbf{I}_{B}}{\partial \mathbf{V}_{CE}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$
$$\mathbf{y}_{21} = g_{\pi} = \frac{\partial \mathbf{I}_{C}}{\partial \mathbf{V}_{BE}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$

$$\begin{split} & \text{Small Signal Model of BJT} \\ & \textbf{I}_{_{B}} = \frac{J_{_{S}}A_{_{E}}}{\beta}e^{\frac{V_{_{BE}}}{V_{t}}} e^{\frac{V_{_{BE}}}{V_{t}}} & \textbf{I}_{_{C}} = J_{_{S}}A_{_{E}}e^{\frac{V_{_{BE}}}{V_{t}}} \left(1 + \frac{V_{_{CE}}}{V_{_{AF}}}\right) \end{split}$$

Small-signal model:

$$g_{\pi} = \frac{\partial I_{B}}{\partial V_{BE}}\Big|_{\bar{V}=\bar{V}_{Q}} = \frac{1}{V_{t}} \frac{J_{S}A_{E}}{\beta} e^{\frac{V_{BE}}{V_{t}}}\Big|_{\bar{V}=\bar{V}_{Q}} = \frac{I_{BQ}}{V_{t}} \cong \frac{I_{CQ}}{\beta V_{t}}$$

$$\mathbf{y}_{_{12}} = \left. \frac{\partial \mathbf{I}_{_{B}}}{\partial \mathbf{V}_{_{CE}}} \right|_{_{\bar{\mathbf{V}}=\bar{\mathbf{V}}_{_{Q}}}} = \mathbf{0}$$

$$\mathbf{y}_{21} = g_{m} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{BE}}\Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}} = \frac{1}{\mathbf{V}_{t}} \mathbf{J}_{s} \mathbf{A}_{E} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}} \left(1 + \frac{\mathbf{V}_{CE}}{\mathbf{V}_{AF}}\right)\Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}} = \frac{\mathbf{I}_{CQ}}{\mathbf{V}_{t}}$$

$$\mathbf{y}_{_{22}} = g_{_{\mathcal{O}}} = \frac{\partial \mathbf{I}_{_{\mathbf{C}}}}{\partial \mathbf{V}_{_{\mathbf{CE}}}} \bigg|_{_{\bar{\mathbf{V}}=\bar{\mathbf{V}}_{_{\mathbf{Q}}}}} = \frac{\mathbf{J}_{_{\mathbf{S}}}\mathbf{A}_{_{\mathbf{E}}}\mathbf{e}^{\frac{\mathbf{V}_{_{\mathbf{BE}}}}{\mathbf{V}_{_{\mathbf{I}}}}}}{\mathbf{V}_{_{\mathbf{AF}}}} \bigg|_{_{\bar{\mathbf{V}}=\bar{\mathbf{V}}_{_{\mathbf{Q}}}}} \cong \frac{\mathbf{I}_{_{\mathbf{CQ}}}}{\mathbf{V}_{_{\mathbf{AF}}}}$$

Small-signal Operation of Nonlinear Circuits

- Small-signal principles
- Example Circuit
- Small-Signal Models

Recall:

Alternative Approach to small-signal analysis of nonlinear networks

- 1. Linearize nonlinear devices (have small-signal model for key devices!)
- 2. Replace all devices with small-signal equivalent
- 3. Solve linear small-signal network

Determine the small signal voltage gain $A_V = v_{OUT} / v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

Example: Determine the small signal voltage gain $A_V = v_{OUT} / v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

Example: Determine the small signal voltage gain $A_V = v_{OUT} / v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

Small-signal MOSFET model for $\lambda=0$

Example: Determine the small signal voltage gain $A_v = v_{OUT} / v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

Small-signal circuit

Small-signal circuit

Analysis:

By KCL

$$g_{m1} \mathcal{V}_{GS1} = g_{m2} \mathcal{V}_{GS2}$$

but
$$\mathcal{V}_{GS1} = \mathcal{V}_{IN}$$

$$-\mathcal{V}_{GS2} = \mathcal{V}_{OUT}$$

thus:

$$A_{V} = \frac{\boldsymbol{\mathcal{V}}_{OUT}}{\boldsymbol{\mathcal{V}}_{IN}} = -\frac{\boldsymbol{g}_{m1}}{\boldsymbol{g}_{m2}}$$

The width and length ratios can be accurately set when designed in a standard CMOS process